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Abstract

A new formalism for the transport properties of partially ionized and unmagnetized plasmas is investigated from a

computational point of view. Heavy particle transport expressions for shear viscosity, translational thermal conduc-

tivity, and thermal diffusion ratios are obtained from the solution of symmetric linear systems. Electron transport

properties are also presented. A general Stefan–Maxwell equation and two approximate formulations deal with dif-

fusion phenomenon. Well-posedness of the transport properties is established, provided that some conditions on the

kinetic data are met. The mathematical structure of the transport matrices is readily used to build transport algorithms

inspired by Ern and Giovangigli [J. Comput. Phys. 120 (1995) 105]. These algorithms rely either on a direct linear solver

or on convergent iterative Krylov projection methods, such as the conjugate gradient. The Stefan–Maxwell matrix is

singular and a mass conservation constraint completes the system of equations. A yet symmetric and non-singular

Stefan–Maxwell matrix including the mass constraint is introduced for the direct method. A suitable projector asso-

ciated with the singular form of the matrix is used for the iterative methods. An 11-species air mixture in local ther-

modynamic equilibrium at atmospheric pressure serves as benchmark to assess the physical model and numerical

methods. Superiority of the conjugate gradient method with respect to the direct solver and approximate mixture rules

found in the literature is demonstrated in terms of accuracy and computational cost.
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1. Introduction

Transport phenomena in partially ionized and unmagnetized plasmas can be described by means of the
kinetic theory of dilute gases. Transport fluxes are thoroughly derived for this type of plasma in a previous

publication [1], principally based upon works of Kolesnikov [2] and Degond and Lucquin-Desreux [3].

Multicomponent transport coefficients are expressed as the solution of linear systems whose size is pro-

portional to the number of species in the mixture. These systems are deduced from a symmetric formalism

inspired by Chapman and Cowling [4] or Ferziger and Kaper [5], at variance with the non-symmetric

approach of Hirschfelder et al. [6].

Evaluation of the multicomponent transport coefficients by direct inversion of these linear systems can

be computationally expensive when the number of species becomes large. A symmetric formalism allows for
the number of operations to be reduced by a factor of 2. However, the computational effort remains ex-

cessive for most fluid simulations. Approximate mixture rules constitute an alternative to evaluate at lower

cost the multicomponent transport coefficients [7,8]. Unfortunately, these mixture rules are known to be

inaccurate in the dissociation and ionization ranges [9–13]. Recently, another solution was proposed by Ern

and Giovangigli [14] who developed low-cost accurate algorithms to provide the multicomponent transport

properties of mixtures composed of neutral species. In the present work, these algorithms are adapted and

applied to partially ionized and unmagnetized plasmas. The case of magnetized plasmas in thermal equi-

librium is investigated by Giovangigli and Graille [15].
2. Transport fluxes

Our gas mixture is composed of N species referred to the set of indices S ¼ f1; . . . ;Ng ¼ H [ feg,
where heavy particles are distinguished from electrons. Due to mass disparity, electrons and heavy particles

exhibit distinct kinetic time scales. Consequently, small departures from thermal equilibrium may be

envisaged. Electron translational temperature reads Te and heavy particle translational temperature is for
all i 2 H, Ti ¼ Th, with jTe � Thj � Te � Th. The Knudsen number is assumed to be small, the gas is

collision-dominated. The Hall parameter of electrons is smaller than the Knudsen number. Thus, the

magnetic field influence on transport properties remains negligible, the plasma is unmagnetized. The Debye

length is considered to be smaller than a reference length in the flow, the plasma is quasi-neutral. The

influence of chemical reactions on transport phenomena is neglected. The validity of these assumptions is

discussed in [1].
2.1. Governing equations

The Navier–Stokes equations for chemically reacting flows are presented neglecting the internal energy

of atoms and polyatomic molecules. A general treatment of the internal energy requires specific energy

relaxation models between the various energy modes. This is not the object of the present research. Hence,

the Navier–Stokes equations read
otðqiÞ þ r � ðqivÞ þ r � ðqiViÞ ¼ xi; i 2 S; ð1aÞ
otðqÞ þ r � ðqvÞ ¼ 0; ð1bÞ
otðqvÞ þ r � ðqv� vÞ þ r � P ¼ j� B; ð1cÞ
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otðqeeeÞ þ r � ðqeeevÞ þ r � ðqeÞ ¼ �qeVe �
d

dt
v� pe : rvþ je � E0 þ DE0

e ; ð1dÞ
otðqeÞ þ r � ðqevÞ þ r � ðqh þ qeÞ ¼ �P : rvþ j � E0; ð1eÞ

where qi is the species mass density, q ¼
P

j2S qj the mixture mass density, v the hydrodynamic velocity, xi

the species mass production rate, qiei ¼ 3
2
nikBTi the species translational energy, qe ¼

P
j2S qjej the mixture

translational energy, and pi the partial pressure. The transport fluxes are the diffusion velocities Vi, shear

stress P, heavy particle heat flux qh, and electron heat flux qe. Symbol d=dt ¼ ot þ v � r stands for the

material derivative. The conduction current of species i is given by the flux of charge ji ¼ niqiVi, where ni
and qi are the species number density and charge. The mixture conduction current reads j ¼

P
j2S jj. The

electric field in the hydrodynamic velocity frame reads E0 ¼ Eþ v� B, where E is the electric field and B the

magnetic field. The energy exchanged by elastic collisions between electrons and heavy particles DE0
e is

given in Appendix B.

2.2. Kinetic expressions

The solution of the Boltzmann equation for dilute gases allows for the transport fluxes of a partially
ionized plasma to be computed. The plasma parameter is proportional to the number of electrons in a

sphere of radius equal to the Debye length. This number is assumed to be sufficiently large such that

charged particle interactions can be treated as binary collisions with a Debye–H€uckel screening of the

Coulomb potential. Furthermore, ionized gases composed of electrons and heavy particles require a special

treatment due to a mass disparity between both species. In [1], a dimensional analysis of the Boltzmann

equation exhibits different kinetic time scales for electrons and heavy particles. Their translational tem-

peratures may differ but their hydrodynamic velocity is supposed to be identical. At the hydrodynamic time

scale, the energy exchanged between electrons and heavy particles tends to equalize both temperatures. A
perturbative Chapman–Enskog method, modified to deal with mass disparity and thermal non-equilibrium,

supplies with integral equations. A spectral Galerkin projection using Laguerre–Sonine polynomials yields

transport systems. In this section, final expressions of the transport fluxes are presented in terms of reduced

collision integrals (see their definition in Appendix A), more suitable for applications than the collision

integrals of [1]. Transport matrices are explicited in Appendix C. The internal energy is not taken into

account. The influence of the internal degrees of freedom on transport phenomena is addressed in various

specialized publications cited in the general reference [5]. However, a rigorous treatment of the internal

energy leads to transport collision integrals difficult to estimate with accuracy in high-temperature plasmas.
Capitelli et al. [16,17] have recently assessed the role of electronically excited states on the viscosity and

reactive thermal conductivity for a hydrogen plasma in the temperature range 10,000–25,000 K by com-

puting the adequate resonant charge and excitation transfer cross-sections. In Section 4, a passive transport

of the internal energy has been retained instead, neglecting inelastic collisions.

2.2.1. Shear stress

Shear stress reads

P ¼ pI� g½rvþ rvð ÞT� þ 2
3
gr � vI; ð2Þ

where p ¼
P

j2S pj is the pressure of the mixture. Symbol I stands for the identity tensor. The shear viscosity
g is given in the first Laguerre–Sonine approximation denoted by gð1ÞX

j2H
Gg

ija
g
j ¼ xi; i 2 H; ð3aÞ
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gð1Þ ¼
X
j2H

agj xj; ð3bÞ

where xi is the mole fraction of species i. Electrons do not contribute to the viscous shear stress.

2.2.2. Heavy particle heat flux

The heavy particle heat flux is expressed by

qh ¼
X
j2H

qjhjVj þ nkBTh
X
j2H

khTjVj � khrTh; ð4Þ

where n and kB are the mixture number density and Boltzmann constant. Species enthalpies read

hi ¼ hTi þ hFi; i 2 H; ð5Þ

where hTi is the translational species enthalpy, evaluated at the translational temperature Th. The chemical

reaction contribution is included by means of the formation enthalpy hFi. The translational thermal con-

ductivity kh of heavy particles is given in the second Laguerre–Sonine approximation denoted by khð2ÞX
j2H

Gkh
ij a

kh
j ¼ xi; i 2 H; ð6aÞ
khð2Þ ¼
X
j2H

akhj xj: ð6bÞ

Heavy particle thermal diffusion ratios khTj are then obtained as follows:

khTi 2ð Þ ¼ 5

2

X
j2H

K01
ij a

kh
j ; i 2 H; ð7Þ

where
P

j2H khTj ¼ 0 and khTe
¼ 0. The translational thermal conductivity and thermal diffusion ratios of

heavy particles do not depend on electrons.

2.2.3. Electron heat flux

The electron heat flux is expressed by

qe ¼ qeheVe þ nkBTh
X
j2S

keTjVj � kerTe; ð8Þ

where the electron enthalpy is composed of translational and formation contributions

he ¼ hTe
þ hFe

: ð9Þ

Translational enthalpy is evaluated at the electron translational temperature Te. The electron thermal

conductivity ke reads in the second and third Laguerre–Sonine approximations

keð2Þ ¼
x2e
K11

ee

; ð10aÞ
keð3Þ ¼
x2eK

22
ee

K11
eeK

22
ee � K12

ee

� �2 : ð10bÞ
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Electron thermal diffusion ratios keTi are obtained from

keTi 2ð Þ ¼ 5

2

Te
Th

xe
K01

ie

K11
ee

; ð11aÞ
keTi 3ð Þ ¼ 5

2

Te
Th

xe
K01

ie K
22
ee � K02

ie K
12
ee

K11
eeK

22
ee � K12

ee

� �2 ; ð11bÞ

where i 2 S and
P

j2H keTj þ keTe
Te=Th ¼ 0.
2.2.4. Diffusion velocities

The diffusion velocity of species i reads

Vi ¼ �
X
j2S

Dij dj

�
þ khTjr ln Th þ keTjr ln Te

�
; ð12Þ

where driving forces are defined as

di ¼
rpi
nkBTh

� yip
nkBTh

r ln p � jiE: ð13Þ

Symbol yi is the species mass fraction. Expression ji stands for xiqi=ðkBThÞ � yiq=ðkBThÞ, where q ¼P
j2S xjqj is the mixture charge. Mass conservation is expressed by the constraint

X
j2S

GV
j Vj ¼ 0; ð14Þ

where GV
i ¼ yi; i 2 S. Quantities di and ji are not linearly independent,

P
j2S dj ¼ 0 and

P
j2S jj ¼ 0.

Diffusion coefficients Dij determine the diffusion velocities given in Eq. (12). Equivalently, the diffusion
velocities are found to be solution of a generalized Stefan–Maxwell equation

X
j2S

GV
ijVj � jiE ¼ �d0i; i 2 H; ð15aÞ
X
j2S

GV
ejVj � je

Th
Te

E ¼ � Th
Te

d0e: ð15bÞ

Modified driving forces are introduced

d0i ¼
rpi
nkBTh

� yip
nkBTh

r ln p þ khTir ln Th þ keTi
Ti
Te

r ln Te; ð16Þ

with
P

j2S d0j ¼ 0. The Stefan–Maxwell equation keeps the same structure independently of the Laguerre–

Sonine approximation order.

Approximations of the generalized Stefan–Maxwell equation are derived in [1]. Assuming that for all

i 2 H, there exists j 2 H; j 6¼ i, such that xe=Die � xj=Dij, Kolesnikov�s model [18] is retrievedX
j2S

~GV
ijVj � jiE ¼ �d0i; i 2 H; ð17aÞ
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~GV
eeVe � je

Th
Te

E ¼ � Th
Te

d0e: ð17bÞ

Seeing that Die � Dij, for all i; j 2 H, the hypothesis on Kolesnikov�s model is always satisfied for partially

ionized plasmas. Assuming further that for all i 2 H, there exists j 2 H; j 6¼ i, such that

xeVe=Die � xjVj=Dij or such that xeVe=Die � xjVi=Dij, a generalization of Ramshaw and Chang�s hydro-
dynamic model [19] is obtained. The electric field is given by E ¼ d0e=je, and the diffusion velocities of heavy

particles are determined fromX
j2H

ĜV
ijVj ¼ �d0i þ

ji

je

d0e; i 2 H: ð18Þ

Eq. (18) relies on a strong hypothesis. Therefore, its validity domain is restricted.
2.2.5. Conduction current

Using Eq. (12), Ohm�s law for unmagnetized plasmas is obtained

j ¼ rE�
X
i;j2S

niqiDij
rpj
nkBTh

�
� yjp
nkBTh

r ln p þ khTjr ln Th þ keTjr ln Te

�
; ð19Þ

where the electrical conductivity reads r ¼
P

i;j2S niqiDijjj. Current flows due to an electric field, con-

centration gradients, pressure gradients, and thermal diffusion. The conduction current can be alternately

derived from the Stefan–Maxwell equations (15) or (17), supplied with the mass constraint given by Eq.

(14). The order of magnitude of the electron diffusion velocity with respect to that of heavy particles de-

pends on the specific electric field and driving forces. Two particular cases often encountered in practice are
now examined.

First, in the absence of any spatial gradients, the only driving force is the electric field. It can be shown

that electrons diffuse faster than heavy particles for a quasi-neutral plasma, Ve � Vi ; i 2 H. Hence, the

main contribution to the conduction current comes from electrons, j � je ¼ neqeVe. In this case, the elec-

trical conductivity is simply given by re ¼ neqeDeeje. Equivalently, the non-symmetric form of the Stefan–

Maxwell equation (17b) yields re ¼ neqejeTh=ðTe ~GV
eeÞ. After some algebra, and using the expression of ~GV

ee

presented in Appendix C, the electrical conductivity reads in the first and second Laguerre–Sonine ap-

proximations

reð1Þ ¼
4

25

ðxeqeÞ2

k2BTe

1

K00
ee

; ð20aÞ
reð2Þ ¼
4

25

ðxeqeÞ2

k2BTe

1

K00
ee � K01

ee

� �2
=K11

ee

: ð20bÞ

Expressions given in Eq. (20) are shown to be identical to those introduced by Devoto [20]. Notice that Eq.

(18) is not valid in this situation.

Second, the electric field is sometimes determined from the ambipolar assumption
P

j2S xjqjVj ¼ 0, i.e.,

the conduction current is assumed to be zero. The ambipolar assumption combined to the mass constraint

[see Eq. (14)] yields the closureX
j2S

jjVj ¼ 0: ð21Þ
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Eq. (21) is preferred to the ambipolar constraint in order to keep a symmetric formulation in thermal

equilibrium when it is used with the Stefan–Maxwell equation (15) and the mass conservation constraint

given in Eq. (14). The approximation given in Eq. (17) can also be substituted to Eq. (15). Furthermore, due
to the plasma quasi-neutrality and ambipolar assumption, diffusion velocity of electrons is of the same

order of magnitude as that of ions. Consequently, Eq. (18) is always valid for partially ionized plasmas with

an ambipolar electric field. The mass conservation reads

X
j2H

ĜV
j Vj ¼ 0; ð22Þ

where ĜV
i ¼ yi; i 2 H. The electron diffusion velocity is obtained from Ve ¼ �

P
j2H xjqjVj=ðxeqeÞ.
2.3. Mathematical properties

2.3.1. Heavy particle systems

In Eqs. (3) and (6), transport systems for the shear viscosity and translational thermal conductivity of

heavy particles take the form Glal ¼ bl, where the symmetric matrix Gl 2 RN�1;N�1 and vectors

al; bl 2 RN�1 (bl
i ¼ xi; i 2 H). Transport coefficients l ¼ g and l ¼ kh are then expressed as a scalar

product l ¼ ðalÞTbl. Electrons do not contribute to these properties and systems correspond to a gas only

composed of heavy particles. Consequently, mathematical properties established for shear viscosity and

translational thermal conductivity of mixtures of neutral species can be directly applied to ionized plasmas,

provided that inelastic collisions are neglected. The following proposition is taken from [21].

Proposition 1. Let A	
ij, B

	
ij, and Dij, i; j 2 H; i 6¼ j, be symmetric positive coefficients such that B	

ij < 25=12,
let gi; i 2 H, be positive coefficients and assume that xi > 0; i 2 H. Then, the matrices Gg, Gkh , diagðGgÞ,
and diagðGkhÞ are symmetric positive definite.

A diagonal matrix based upon the matrix A 2 Rn;n is defined as diagðAÞ ¼ ðAijdijÞi;j2f1;...;ng, where dij is the
Kronecker symbol. Positivity of the matrix Gl ensures well-posedness of the system Glal ¼ bl and supplies

with positive transport properties l ¼ ðalÞTbl, i.e., g > 0 and kh > 0. Proposition 1 remains valid for po-

sitive mole fractions of heavy particles. In particular, we have
P

j2H xj ¼ 1� xe. Furthermore, hypothesis of

positive mole fractions is always satisfied from a physical standpoint. Nevertheless, from a computational

point of view, Ern and Giovangigli [21] have shown smoothness of the shear viscosity and translational

thermal conductivity when some mole fractions become arbitrarily small. Henceforth, transport properties

are evaluated in practice by first adding to all the species mole fractions a small number to avoid any
problems in the numerical method.

In Eq. (18), matrix ĜV 2 RN�1;N�1 depends only on heavy particles. This matrix is singular, as shown in

the following proposition.

Proposition 2. Let Dij and uij, i; j 2 H, i 6¼ j, be symmetric positive coefficients such that uij > �1 and

assume that xi > 0; i 2 H. Then, the matrix ĜV is symmetric positive semi-definite and diagðĜVÞ is positive
definite. Furthermore, the nullspace of ĜV is spanned by the vector R̂V, where R̂V

i ¼ 1; i 2 H.

Proof. An explicit calculation yields for a 2 RN�1; a 6¼ 0

aTĜVa ¼ 1

2

X
i;j2H
i 6¼j

xixj
Dij

1
�

þ uij

�
ðai � ajÞ2 P 0; ¼ 0 if and only if ai ¼ c; i 2 H; c 2 R n f0g:
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The nullspace is determined from the property aTGa ¼ 0 () Ga ¼ 0, for G symmetric positive semi-

definite. Positivity of diagðĜVÞ is trivial to establish. �

Following [21], the constraint vector ĜV 2 RN�1 of Eq. (22) allows for a non-singular matrix
ĜV þ aĜV � ĜV to be introduced, where a 2 R n f0g. The following lemma is an adaptation for a matrix

possibly non-symmetric and with a one-dimensional nullspace of a proposition found in [22]. It can be

particularized to a symmetric positive semi-definite matrix such as ĜV. The non-symmetry property is

necessary for the matrix ~GV.

Lemma 3. Let G 2 Rn;n be a matrix such that the nullspaces of G and GT are, respectively, spanned by the

vectors R 2 Rn and L 2 Rn. Let G 2 Rn be a vector such that RTG 6¼ 0 and LTG 6¼ 0. Then, the oblique

projector P onto the hyperplane ? G along R reads Pij ¼ dij �RiGj=ðRTGÞ. Furthermore, the matrix

Gþ aG� G, where a 2 R n f0g, is non-singular. For a vector b 2 Rn and in the range RðGÞ of G, the solution a
of the system Gþ aG� Gð Þa ¼ b satisfies the system Ga ¼ b and the constraint GTa ¼ 0.

Proof. The matrix Gþ aG� G is non-singular, otherwise there exists a vector a 2 Rn; a 6¼ 0, such that

ðGþ aG� GÞa ¼ 0. Multiplying this expression by LT, one gets GTa ¼ 0, seeing that LTG ¼ 0 and

LTG 6¼ 0. Therefore, a 2 NðGÞ. This is in contradiction with the hypothesisRTG 6¼ 0. The rest of the proof,

straightforward, is omitted. �

Lemma 3 ensures well-posedness of the Stefan–Maxwell equation (18) with the mass constraint given in

Eq. (22).

2.3.2. Electron systems

Properties of the scalars K00
ee and K11

ee are deduced from their definition (see Appendix C).

Proposition 4. Let �Qð1;1Þ
ie , �Qð1;2Þ

ie , �Qð1;3Þ
ie , i 2 H, and �Qð2;2Þ

ee be positive coefficients such that 5�Qð1;2Þ
ie � 4�Qð1;3Þ

ie <

25�Qð1;1Þ
ie =12 and assume that xi > 0; i 2 S. Then, the scalars K00

ee and K11
ee are positive.

This proposition supplies with well-posedness and positivity of the electron thermal conductivity keð2Þ
and electrical conductivity reð1Þ. Conditions on reduced collision integrals for higher Laguerre–Sonine

approximations are not detailed in this work.

2.3.3. Electron-heavy particle systems

In the Stefan–Maxwell equations (15) and (17), matrices GV and ~GV 2 RN ;N include both electron and

heavy particle contributions.

Proposition 5. LetDij and uij, i; j 2 S; i 6¼ j, be symmetric positive coefficients such that uij > �1 and assume

that xi > 0; i 2 S. Then, the matrix GV is symmetric positive semi-definite and diagðGVÞ is positive definite.

Furthermore, the nullspace of GV is spanned by the vector RV, where RV
i ¼ 1; i 2 H, and RV

e ¼ Te=Th.

Proof. The proof is identical to that of Proposition 2. An explicit calculation yields for a 2 RN ; a 6¼ 0

aTGVa ¼ 1

2

X
i;j2H
i 6¼j

xixj
Dij

1
�

þ uij

�
ai
�

� aj
�2 þ 1

2

X
j2H

xexj
Dej

1
�

þ uej

�
ae

�
� Te
Th

aj

�2

P 0;

¼ 0 if and only if ai ¼ c; i 2 H; c 2 R n f0g and ae ¼ cTe=Th:

Positivity of diagðGVÞ is readily deduced from its definition. �
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Proposition 6. Let Dij and uij, i; j 2 S; i 6¼ j, be symmetric positive coefficients such that uij > �1 and

assume that xi > 0; i 2 S. Then, the matrix ~GV 2 RN ;N is non-symmetric and indefinite, and the matrix

diagð~GVÞ is positive definite. Furthermore, the nullspaces of ~GV and ð~GVÞT are, respectively, spanned by the

vectors ~RV and ~LV, where ~RV
i ¼ ~LV

i ¼ 1; i 2 H, ~RV
e ¼ 0, and ~LV

e ¼ Te=Th.

Proof. As usual, an explicit calculation yields for a 2 RN ; a 6¼ 0

aT ~GVa ¼ 1

2

X
i;j2H
i 6¼j

xixj
Dij

1
�

þ uij

�
ai
�

� aj
�2 þ 1

2

X
j2H

xexj
Dej

1
�

þ uej

�
a2e

�
� Te
Th

ajae

�
;

showing that ~GV is indefinite. Positivity of diagð~GVÞ comes from its definition. The vector ~RV 2 Nð~GVÞ and
the vector ~LV 2 N ½ð~GVÞT�. Since the line ~GV

ei; i 2 S, has only zero entries except ~GV
ee, a vector a 2 Nð~GVÞ is

such that ae ¼ 0. Hence, ðaiÞi2H 2 ½Nð~GV
ijÞ�i;j2H. From the relation ~GV

ij ¼ ĜV
ij ; i; j 2 H, and Proposition 2,

one deduces that Nð~GVÞ is one-dimensional. �

Following [21], the constraint vector GV 2 RN given in Eq. (14) allows for non-singular matrices

GV þ aGV � GV and ~GV þ aGV � GV to be introduced, where a 2 R n f0g. Lemma 3 ensures well-posedness

of the Stefan–Maxwell equations (15) and (17) supplied with the constraint given in Eq. (14).
3. Transport algorithms

Systems for the transport fluxes and their mathematical properties were given in Section 2. The adequate

choice of a numerical method to solve these systems is now discussed.

In the absence of rounding errors, the solution of a non-singular system using a direct method is exact

and requires a finite and fixed amount of work. The number of operations, dominated by the LU de-

composition step, scales as n3=3 for large values of the system size n. An operation is defined as one addition

plus one multiplication. Rounding errors can be handled by pivoting strategies. For symmetric positive
definite matrices, the number of operations is halved to n3=6 using an LDLT decomposition. Furthermore,

no pivoting is required.

Krylov projection iterative methods are widely used to solve large sparse linear systems such as those

obtained in the discretization of partial differential equations. Ern and Giovangigli [21] have applied a

Krylov method to dense linear systems yielding the transport fluxes of neutral mixtures. The conjugate

gradient (CG) method for symmetric positive definite matrices appears to be a natural choice, since it

combines both properties of residual minimization and simple recurrence formula. Moreover, iterative

methods are generally used in combination with some preconditioner accelerating convergence of the
method. The CG is associated with a diagonal preconditioner to obtain the transport properties of partially

ionized plasmas. For large dense systems of size n, the computational cost ofm steps of the CG is of the order

of mn2 operations. For a singular system, the CG method does not fail, contrary to a direct method.

Therefore, it is possible to apply the CG algorithm to a symmetric positive semi-definite constrained system

and then project the solution on the constraint subspace. The preconditioner matrix must be symmetric

positive definite.
3.1. Shear stress and heavy particle heat flux

In the system Glal ¼ bl for the heavy particle shear viscosity l ¼ g or translational thermal conductivity

l ¼ kh, the matrix Gl 2 RN�1;N�1 is symmetric positive definite (see Proposition 1). The system can be
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solved by means of the LDLT decomposition in N 3=6 operations. On the other hand, m steps of the CG

method yield an approximate solution in mN 2 operations. The CG preserves positive transport coefficients,

even if the iterative procedure is stopped before convergence. The iterative method is computationally less
expensive than the direct method provided that the inequality m < N=6 is satisfied.
3.2. Diffusion velocities

The matrix GV is symmetric positive semi-definite and its nullspace reads RV (see Proposition 5). Lemma

3 allows for this matrix to be replaced by its non-singular form GV þ aGV � GV in Eq. (15). Quantity a is

adequately chosen such that OðGVÞ ¼ OðGVÞ, for instance a ¼ 1=maxðDijÞ. Provided that the electric field

is known a priori, the non-singular system can be solved using the LDLT decomposition. Alternatively, the
CG method for constrained system can be applied to the singular form, with the projector

PV
ij ¼ dij �RV

i G
V
j =½ðRVÞTGV�; i; j 2 S. In this work, the Stefan–Maxwell equation is preferred to the

transport systems for the diffusion coefficients Dij. Indeed, iterative conjugate gradient solutions of these

systems do not generally provide symmetric diffusion coefficients until convergence is achieved [22].

When the electric field is ambipolar, the generalized Stefan–Maxwell Eq. (15) is supplied with Eq. (21).

The electric field is determined together with the diffusion velocities from the system

GV �jH=s
�jT=s 0

� �
V

sE

� �
¼ �dH0

0

� �
; ð23Þ

where jH
i ¼ jiHi, d

H0
i ¼ d0iHi, Hi ¼ Th=Ti, i 2 S. Quantity s ¼ kjk is a scaling factor. The system is supplied

with the mass conservation constraint [see Eq. (14)]. As usual, a submatrix GV þ aGV � GV allows for a

non-singular form of the system given by Eq. (23) to be introduced. Both singular and non-singular systems

are indefinite and non-symmetric. The non-singular form can be solved by a direct Gaussian elimination

with possible pivoting, whereas a Krylov projection iterative method such as the GMRES [23] is suitable

for the singular form, associated with the projector PV
ij ; i; j 2 S, for the diffusion velocities onto the

constraint subspace along the nullspace of GV. In thermal equilibrium (Th ¼ Te, jH ¼ j), the system be-

comes symmetric but indefinite. A symmetric Gaussian elimination is retained as direct method. Con-
cerning a Krylov projection iterative method, the GMRES is still applicable in thermal equilibrium but the

symmetry property allows for the MINRES [24] to be used instead. The solution of Eq. (17) can be ob-

tained by similar methods, substituting matrix ~GV to matrix GV. Eq. (18) is valid for an ambipolar field. In

this case, the electric field is readily given by E ¼ d0e=je. The non-singular matrix ĜV þ aĜV � ĜV allows for

the LDLT decomposition to be used, whereas the projector P̂V
ij ¼ dij � R̂V

i Ĝ
V
j =½ðR̂VÞTĜV�; i; j 2 H, is as-

sociated with the CG method. Finally, for vanishing mole fraction of charged species, expression s tends to
zero. In Section 4, the electric field is shown to grow unboundly for the particular case of a neutral mixture

in local thermodynamic equilibrium, when charged species disappear (lims!0þ E ¼ þ1, whereas
lims!0þ sE ¼ 0).
4. Results

The transport algorithms for partially ionized and unmagnetized plasmas introduced in Section 3 have

been implemented in the MUTATION library. An 11-species air plasma in local thermodynamic equilib-

rium (LTE) allows for the various numerical methods to be assessed (Th ¼ Te ¼ T ). The mixture chemical
components read: N2, NO, O2, N, O, Nþ

2 , NOþ, Oþ
2 , N

þ, Oþ, and e�. Evaluation of the composition is

based upon conservation of elements O and N, and charge in the mixture. The mixture is composed of 79%

of nitrogen and 21% of oxygen. The net charge is zero. Equilibrium conditions of independent chemical
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reactions complete the set of equations. The Newton iterative procedure of Bottin et al. [25] yields mole

fractions. The collision integrals set employed is described in [25]. The conditions on the collision integrals

B	
ij < 25=12, 5�Qð1;2Þ

ie � 4�Qð1;3Þ
ie < 25�Qð1;1Þ

ie =12, i; j 2 H; i 6¼ j, and uij > �1, i; j 2 S; i 6¼ j, formulated in
Propositions 1,2 and 4,5,6 have been verified to hold for all thermodynamic states considered. Pressure is

kept constant at 1 atm and temperature varies between 250 and 15 000 K. First, the physical model is

evaluated comparing results obtained with the direct methods to literature data. Eventually, the iterative

methods are confronted with mixture rules with respect to accuracy and computational cost, the direct

methods being employed as reference in term of accuracy.

4.1. Physical model

4.1.1. Shear viscosity

The shear viscosity computed by means of Eq. (3) is displayed in Fig. 1. Below the ionization range, it

increases with temperature and presents some modulations linked to changes of composition due to mo-

lecular dissociation. Above 10,000 K, large ion-ion cross-sections drastically decrease the shear viscosity.

4.1.2. Heat and mass fluxes

In order to provide some pragmatic treatment of the internal degrees of freedom, a passive transport of

the internal energy is considered, neglecting inelastic collisions. The species enthalpy of heavy particles
given in Eq. (5) is modified accordingly

hi ¼ hTi þ hEi þ hFi; i 2 Ha; ð24aÞ
hi ¼ hTi þ hRi þ hVi þ hEi þ hFi; i 2 Hp; ð24bÞ

where Ha and Hp stand for the set of indices of atoms and polyatomic molecules. Expressions hRi, hVi, and
hEi correspond to the rotational, vibrational, and electronic species enthalpies. These quantities are eval-

uated, respectively, at the rotational, vibrational, and electronic temperatures: TR, TV, and TE (in our

particular case, TR ¼ TV ¼ TE ¼ T ). Species enthalpies are derived from a semi-classical statistical
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Fig. 1. Shear viscosity of air: –, our results; �, Capitelli et al. [26], and s, Murphy [27].
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mechanics approach with independent degrees of freedom. Moreover, the heavy particle heat flux is cor-

rected by Eucken�s contribution �kRrTR � kVrTV � kErTE. Rotational, vibrational, and electronic ther-

mal conductivities are given by

kR ¼ n
X
i2Hp

xiCR
iP

j2H xj=Dij
; ð25aÞ
kV ¼ n
X
i2Hp

xiCV
iP

j2H xj=Dij
; ð25bÞ
kE ¼ n
X
i2H

xiCE
iP

j2H xj=Dij
; ð25cÞ

where CR
i , C

V
i , and CE

i are the rotational, vibrational, and electronic species specific heats per particle.

Binary diffusion coefficients Dij are defined in Appendix A.

The heat flux components per temperature gradient are compared in Fig. 2. The diffusion heat fluxP
j2S qjhjVj yields the dominant contribution for temperature ranges 2500–9000 and 11,000–15,000 K. The

peaks correspond to the dissociation peaks of O2 and N2 and the ionization peak of nitrogen and oxygen

atoms. Diffusion velocities are deduced from Eq. (15) in the second Laguerre–Sonine approximation. An

electric field, gradients of pressure, temperature, and concentration generate mass fluxes. We envisage the

effect of a thermal gradient on the diffusion velocities, in relation with variations of the equilibrium
composition and ambipolar electric field. The influence of an external electric field or pressure gradient is

not considered. Therefore, the driving forces read di ¼ ðoxi=oT ÞrT � jiE, where E is the ambipolar field.

The electron thermal conductivity ke given in Eq. (10) becomes significant beyond 7000 K. The second

Laguerre–Sonine approximation underestimates the magnitude of ke, a third-order approximation is re-

quired. The heavy particle thermal conductivity khð2Þ and internal thermal conductivity kR þ kV þ kE are
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Fig. 2. Heat flux components of air, per temperature gradient.
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computed using Eqs. (6) and (25). Their influence is major below 2500 K and between the peaks of diffusion

heat flux. The thermal diffusion heat flux p
P

j2S½khTjð2Þ þ keTjð3Þ�Vj weakly contributes to the total heat flux

in LTE plasmas.
Major heavy particle thermal diffusion ratios khTjð2Þ computed using Eq. (7) are shown in Fig. 3, whereas

major electron thermal diffusion ratios keTj deduced from Eq. (11) are presented in Fig. 4. The Laguerre–

Sonine approximation order is referred to symbol n. The third Laguerre–Sonine approximation is necessary

to accurately compute keTj.
The variants of the Stefan–Maxwell equations (15), (17), and (18) are, respectively, denoted by SM1,

SM2, and SM3. The diffusion heat flux computed by means of Eq. (15) with a second-order Laguerre–

Sonine approximation (i.e., SM1 with n ¼ 2) serves as reference. Heavy particle thermal diffusion is

evaluated with n ¼ 2, whereas electron thermal diffusion is computed with n ¼ 3. As demonstrated in
Fig. 5, both approximations SM2 and SM3 with n ¼ 2 are accurate, the relative error on the diffusion heat

flux being inferior to 10�3. Results are also obtained using SM1 with n ¼ 1 and no thermal diffusion. The

major error is caused by the absence of thermal diffusion (more than 10% around 5000 K and 4% above

12,000 K). This is verified by using SM1 still with n ¼ 1 but including thermal diffusion (maximum 3% of

error). Butler and Brokaw [28] have derived a formula for a reactive thermal conductivity to compute the

diffusion heat flux of a mixture in LTE. This formula remains valid in ionized mixtures with an ambipolar

field [25], but does not incorporate pressure and thermal diffusion. Moreover, Butler and Brokaw�s formula

does not account for elemental demixing. This formula generates more than 25% of relative error about
4000 K and above 14,000 K.

The ambipolar electric field is displayed in Fig. 6. It is eliminated from SM3 and reads E ¼ d0e=je. The

electron mole fraction tends to zero faster than the electron driving force when temperature decreases below

2500 K. Consequently, the ambipolar electric field grows unboundly when temperature decreases under this

threshold. The ambipolar electric field is still present in SM1 and SM2. Nevertheless, the method to solve

these equations remains robust since the term jiE; i 2 S, cancels out at low temperature.
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The total heat flux is compared in Fig. 7 to the computed results of Capitelli et al. [26] and Murphy [27],

and experimental values of Azinovsky et al. [29]. Two different physical situations are depicted. First, the

driving forces are due to concentration gradients induced by a thermal gradient in an equilibrium mixture

with frozen elemental fractions including thermal diffusion, the Stefan–Maxwell equation supplies with the

diffusion velocities. Second, no possible diffusion of elements is allowed, the diffusion heat flux is computed
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Fig. 7. Total heat flux of air per temperature gradient: —, Stefan–Maxwell, our results; - - - Butler–Brokaw, our results; �, Capitelli

et al. [26]; s, Murphy [27], and �, Azinovsky et al. [29].
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by means of the Butler–Brokaw formula. Capitelli et al. [26] and Murphy [27] have used the Butler–Brokaw

formula.

4.1.3. Electrical conductivity

We consider now a plasma influenced by an electric field and without any spatial gradients. It is es-

tablished in Section 2.2 that the electrical conductivity does not depend on ions. This can be verified by

using Eq. (15) without any spatial gradients and a unit electric field. The conduction current corresponds

then to the electrical conductivity. The electrical conductivity re calculated in a simpler manner from Eq.

(20) is compared in Fig. 8 to the computed results of Capitelli et al. [26] and Murphy [27], and experimental

values of Azinovsky et al. [29]. The second Laguerre–Sonine approximation yields accurate results.

4.2. Computational aspects

Approximate formulas and rules to compute mixture transport properties abound in the literature [12,13].

Wilke�s rule [7] and Gupta–Yos�s formulas [8] are widely used in the computational fluid dynamics field to

estimate the heavy particle shear viscosity and translational thermal conductivity. Sutton and Gnoffo [30]

have also developed an algorithm to solve the Stefan–Maxwell equation. The accuracy and computational

efficiency of these mixture rules, the Sutton–Gnoffo algorithm, and our methods are evaluated. The com-

putational time corresponds to one million of calls to the tested routine for sixty temperature points from 250
to 15,000 K. The number of iterations of the various iterative methods is selected empirically based on the

residual norm, such that the relative error on the transport property remains below 1%.

4.2.1. Shear viscosity

The relative error on the shear viscosity is presented in Fig. 9. Wilke�s rule leads to a relative error about

10% in the dissociation range rising up to 70% in the ionization range. Below 9000 K, the Gupta–Yos

formula is accurate and one CG iteration is sufficiently precise. Above this temperature threshold, the
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Table 1

Computational cost of g

CG 1.00

Direct 1.51

Gupta–Yos 1.03

Wilke 2.16
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Gupta–Yos formula fails with a maximum relative error of 40%, whereas one CG iteration yields maximum
6% of error. Two CG iterations provide accurate results.

The computational cost is summarized in Table 1. Wilke�s rule for the shear viscosity requires 3N � 3

square roots to be evaluated. The number of operations of the Gupta–Yos formula scales as N 2=2. The CG
is the cheapest and most accurate method.
4.2.2. Heavy particle translational thermal conductivity

Fig. 10 reveals that similar conclusions hold for accuracy of the different methods to evaluate the heavy

particle translational thermal conductivity. The computational cost is shown in Table 2. The Gupta–Yos
formula for the thermal conductivity requires N 2 operations and is more expensive than the formula for the

shear viscosity. The CG remains the cheapest method.
4.2.3. Heavy particle thermal diffusion ratios

The relative error on the thermal diffusion heat flux is presented in Fig. 11. Diffusion velocities are

calculated with a direct method. Three CG iterations are sufficient to estimate with accuracy the heavy

particle thermal diffusion ratios.

Thermal diffusion ratios computed together with the translational thermal conductivity necessitate one
matrix vector product, i.e., N 2 operations. This explains the computational cost given in Table 3.
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Table 2

Computational cost of kh

CG 1.00

Direct 1.59

Gupta–Yos 2.18

Wilke 2.31
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Table 3

Computational cost of khTi; i 2 H

kh and khTi kh

CG 1.00 0.47

Direct 1.18 0.76
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4.2.4. Stefan–Maxwell equation

Three iterative methods are tested to obtain the diffusion velocities. Two CG iterations are necessary to

accurately solve for SM3 (see Fig. 12). The Sutton–Gnoffo algorithm applied to the same equation presents
a slower convergence as shown in Fig. 13. The GMRES applied to SM1 requires four iterations for a

converged result (see Fig. 14).

Table 4 establishes that the CG applied to SM3 remains the fastest method.

4.2.5. Computational cost

The absolute and relative computational cost of the transport properties is summarized in Table 5.

Evaluation of the electron properties keð3Þ, keTið3Þ; i 2 S, reð2Þ, and uieð2Þ; i 2 H, corresponds to about

1% of the total cost. Therefore, these quantities are not displayed in the table. Second-order corrections of
the Stefan–Maxwell equation are expensive. The evaluation of the transport collision integrals is more

expensive than a typical transport property computation.
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Table 4

Computational cost of Vi; i 2 S

CG (SM3) 1.00

Direct (SM3) 1.90

Sutton–Gnoffo (SM3) 2.70

GMRES (SM1) 2.66

Direct (SM1) 3.03



Table 5

Computational cost, summary

Absolute (s) Relative (%)

uijð2Þ; i; j 2 H; i 6¼ j 4809 36.9

Collision integrals 4410 33.9

khð2Þ and khTið2Þ; i 2 H (CG) 1664 12.8

gð1Þ (CG) 838 6.4

Vi; i 2 S (CG, SM3) 824 6.3

kR þ kV þ kE, 301 2.3

Total 13,030 100.0
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5. Conclusions

The new formalism for the transport properties of partially ionized and unmagnetized plasmas

derived in [1] was envisaged under a computational perspective. We established well-posedness of the
transport property expressions, provided that some conditions on the kinetic data are met. The

mathematical structure of the transport matrices was readily used to build transport algorithms in-

spired by Ern and Giovangigli [21]. The LDLT decomposition was chosen as direct solver. Various

convergent iterative Krylov projection methods were also presented. The constrained Stefan–Maxwell

equation required a special treatment for mass conservation. A non-singular yet symmetric form was

introduced in the case of direct methods and a suitable projector was associated with iterative

methods.

Validity of the physical model and efficiency of the algorithms were examined for an 11-species air
plasma in LTE. We recommend one non-vanishing Laguerre–Sonine contribution to evaluate the shear

stress and heat and mass fluxes of heavy particle properties, whereas two non-vanishing Laguerre–So-

nine contributions are requested for electron properties. Concerning the heavy-particle shear viscosity

and thermal conductivity, mixture rules of Wilke and Gupta–Yos were shown to be less accurate and

generally more expensive than the CG with a diagonal preconditioner. Therefore, these mixture rules

must be abandoned in favor of the CG. In the case of ambipolar diffusion, an approximation of the

Stefan–Maxwell equation involving only heavy particle velocities is retained. In that model, the ambi-

polar field is proportional to the electron driving force. The CG with a diagonal preconditioner and a
projection step to ensure mass conservation constitutes the most efficient method to obtain the diffusion

velocities.

The transport algorithms can be further applied to computational fluid dynamics simulations in LTE

or in thermo-chemical non-equilibrium. A suitable flow simulation will allow for concentration, pressure,

and temperature gradients effects on diffusion fluxes to be analyzed. Finally, for mixtures composed of a

large number of species, superiority of the iterative methods with respect to the direct methods will be

indisputable.
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Appendix A. Collision integrals

The deflection angle v is related to the interaction potential uðrÞ

v ¼ p� 2b
Z 1

rm

dr=r2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2=r2 � uðrÞ= 1

2

mimj

miþmj
g2

� �r ; ðA:1Þ

where b is the impact parameter, r the distance between colliding particles, rm the distance of closest ap-

proach, mi the mass of species i, and g the relative velocity of colliding particles. Cross-sections are given in

terms of the deflection angle

QðlÞ
ij ¼ 2p

Z 1

0

1
�

� cosl v
�
bdb: ðA:2Þ

Reduced collision integrals �Qðl;sÞ
ij and binary diffusion coefficients Dij are presented in thermal non-equi-

librium, in relation with the dimensional collision integrals Xðl;sÞ
ij defined in [1]. Introducing a reference

length rij of the interaction potential, reduced collision integrals Xðl;sÞ	
ij in the nomenclature of Hirschfelder

et al. [6] or Ferziger and Kaper [5] are also explicited to avoid any ambiguity. The collision integrals and

binary diffusion coefficients are symmetric in the species.
• Heavy–heavy interactions, i; j 2 H.

�Qðl;sÞ
ij ¼ pr2

ijX
ðl;sÞ	
ij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p
kBTh

mimj

mi þ mj

s
4ðlþ 1Þ

sþ 1ð Þ! 2lþ 1� � 1ð Þl
h iXðl;sÞ

ij

¼ 4ðlþ 1Þ
sþ 1ð Þ! 2lþ 1� � 1ð Þl

h i Z 1

0

exp
�
� g2

�
g2sþ3QðlÞ

ij dg; ðA:3aÞ
nDij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBTh mi þ mj

� �
mimj

s
3

16�Q 1;1ð Þ
ij

; ðA:3bÞ

where g ¼ fmimj=½ðmi þ mjÞ2kBTh�g1=2g. Usual combinations of collision integrals are introduced

A	
ij ¼

�Q 2;2ð Þ
ij

�Q 1;1ð Þ
ij

; ðA:4aÞ
B	
ij ¼

5�Q 1;2ð Þ
ij � 4�Q 1;3ð Þ

ij

�Q 1;1ð Þ
ij

; ðA:4bÞ
C	
ij ¼

�Q 1;2ð Þ
ij

�Q 1;1ð Þ
ij

: ðA:4cÞ

Shear viscosity coefficients read

gi ¼
5

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pkBThmi

p

�Q 2;2ð Þ
ii

: ðA:5Þ
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• Heavy–electron interactions, i 2 H

�Qðl;sÞ
ie ¼ pr2

ieX
ðl;sÞ	
ie ¼

ffiffiffiffiffiffiffiffiffiffiffi
2pme

kBTe

s
4ðlþ 1Þ

sþ 1ð Þ! 2lþ 1� � 1ð Þl
h iXðl;sÞ

ie

¼ 4ðlþ 1Þ
sþ 1ð Þ! 2lþ 1� � 1ð Þl

h i Z 1

0

exp
�
� g2

�
g2sþ3QðlÞ

ie dg; ðA:6aÞ
nDie ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pkBTe
me

s
3

16�Q 1;1ð Þ
ie

; ðA:6bÞ

where g ¼ ½me=ð2kBTeÞ�1=2g.
• Electron–electron interactions
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eeX
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ffiffiffiffiffiffiffiffiffiffiffiffi
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me

s
3
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ee
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where g ¼ ½me=ð4kBTeÞ�1=2g.
Appendix B. Elastic energy exchange

The energy exchanged by elastic collisions between electrons and heavy particles reads

DE0
e ¼

3
2
nekB Th � Teð Þ

s
; ðB:1Þ

where the relaxation time s is given by

1

s
¼ 8

3

X
j2H

me

mj

ffiffiffiffiffiffiffiffiffiffiffi
8kBTe
pme

s
nj �Q

1;1ð Þ
ej : ðB:2Þ
Appendix C. Transport systems

• Heavy particle subsystem, i; j 2 H

Gg
ij ¼ Gg

ji ¼
1

Th
H 00

ij ¼ xixj
nDij

1

mi þ mj

� � 6

5
A	
ij

�
� 2

�
; i 6¼ j; ðC:1aÞ



T.E. Magin, G. Degrez / Journal of Computational Physics 198 (2004) 424–449 447
Gg
ii ¼

1

Th
H 00

ii ¼
X
j2H
j 6¼i

xixj
nDij

1

mi þ mj

� � 6

5

mj

mi
A	
ij

�
þ 2

�
þ x2i

gi
; ðC:1bÞ
Gkh
ij ¼ Gkh

ji ¼ K11
ij ¼ 1

25kB

xixj
nDij

mimj

mi þ mj

� �2 16A	
ij

�
þ 12B	

ij � 55
�
; i 6¼ j; ðC:1cÞ
Gkh
ii ¼ K11

ii ¼ 1

25kB

X
j2H
j 6¼i

xixj
nDij

1

mi þ mj

� �2 30m2
i

�
þ 25m2

j � 12m2
j B

	
ij þ 16mimjA	

ij

�
þ 4

15kB

x2i mi

gi
; ðC:1dÞ
K01
ij ¼ K10

ji ¼ 1

25kB

xixj
nDij

mi

mi þ mj

� � 12C	
ij

�
� 10

�
; i 6¼ j; ðC:1eÞ
K01
ii ¼ K10

ii ¼ � 1

25kB

X
j2H
j 6¼i

xixj
nDij

mj

mi þ mj

� � 12C	
ij

�
� 10

�
; ðC:1fÞ
GV
ij ¼ GV

ji ¼ ~GV
ij ¼ ~GV

ji ¼ ĜV
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• Heavy particle-electron subsystem, i 2 H
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• Electron subsystem
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Correction functions are obtained in various Laguerre–Sonine approximations for uij; i; j 2 H
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